京都ヘルスサイエンス総合研究センター共同研究に係る研究成果

(ホームページ用)

グループ名	医療計測・診断研究グループ		
	(所 属)	(職 名)	(氏 名)
グループ長	京都工芸繊維大学	准教授	福澤理行
研究組織の体制	京都工芸繊維大学 京都府立医科大学 京都府立大学 京都薬科大学	准教授 助教 教授 特任准教授 教授 教授 助手	福澤 理行 社 出田 恵 西井 現二 田 田 田 田 田 田 田 七 七 田 一 元 七 田 一 元 七 七 七 七 七 七 七 七 七 七 七 七 七
研究の 名称 研究のキーワ	高度医療診断支援システムと生体メカニズム解析技術の開発に関する研究 Q-Space Imaging、コンピュータ支援診断、超高感度病原体検出、		
ード (注1)	生体元素イメージング		
研究の 概要 (注2)	ナー等も開催している	生化学的な計 参断の技術の向 多次元医用画 関医療診断を 少生体分子レベ カニズムを解 研究を発展させ 同研究のメリ 音手教員や学生を対象と る。	薬学 な関連分野のセミ
研究の背景	的・生化学的な計測 要因を検査できるよう 理を中心に、MRI画像 を目指し蛍光および 気の関係を明らかにで		Ⅱ胞レベルでの病気の バループでは、画像処 医療診断の技術の向上 E体組織中の元素と病
研究手法	処理の最適化、症 ステムの開発。 2. ナノサイズの水素 と単一菌体レベル 面プラズモン共鳴 3. 糖尿病状態や肥満 挙動の変動の分析	の医用画像について、『 病態計測を行うための、 気泡を用いる新規なラ くの検出が可能なDNA増 島(SPR)増感法の開発。 情における組織中生体元 るに、亜鉛やバナウな るに素を投与した糖尿病 の連関を解析	高度医療診断支援シ マン増強媒体合成法 福を用いる新規な表 素の増減や体内分布 どの抗糖尿病作用の

研究の進捗状 拡散MRIにおけるQSI(q-space imaging)をターゲットとして、 多数の拡散MRI画像に対する効果的な前処理、ノイズ分析に基 況と成果 づく信号減衰曲線の推定、病態計測に最適な可視化手法を検 討した。特に、長時間の拡散MRI撮影における体動の検出と補 正に関しては、b0画像を挿入する実用的な手法を確立でき、 現在、論文投稿を準備中である。本システムの開発で培った ノウハウを活用し、蛍光バイオセンサの画像解析に関する研 究成果も得られた。 極少数の病原体の迅速検出を可能にする表面プラズモン(SP) 電場緩和熱によるDNA伸長を利用した超高感度分析法を確立 し、論文と国際会議2件で発表した。この方法は標的病原体の DNAやRNAを増幅する従来のPCR法とは異なり、近赤外光による SP電場の緩和熱でDNA合成酵素を駆動して標的とは無関係の DNAを急速伸長させて蛍光検出するもので、模擬試料として3 μ m, 10μ mのラテックス粒子の計数に成功したほか、直径数 +nmのタンパク質の検出にも成功した。ノロウィルスや0-157 などの病原体のその場迅速検査に向いていると考えられ、今 後の展開が期待される。 誘導結合プラズマ-質量分析装置が設置されてから、主として 糖尿病状態や肥満における組織中生体元素の増減や体内分布 挙動の変動の分析を行ってきたが、ごく最近になり、非アル コール性肝炎 (NASH) から肝臓がんに至るマウスモデルを用 いて主に鉄総量及び同位体比率の変動を分析し、肝炎から肝 がんに至る過程で「肝臓及び血漿中の鉄イオン濃度の減少、 鉄総量を構成する同位体比率の変動」が新たなバイオマーカ ーとなりうる事を見出した。また、抗糖尿病作用を有する亜 鉛錯体を投与した糖尿病モデル動物で治療効果を改正した結 果、膵臓や肝臓における亜鉛の分布と効果が連関する事を見 出した。加えて、レーザーアブレーション生体元素イメージ ング装置の運用により、各疾患状態の組織切片を用いた生体 元素の二次元ダイジェスチョン分析法を確立できたところで ある。 地域への研究 研究成果が直接地域に還元される事例はないものの、本共同研究 の継続によって、ヘルスサイエンス分野の担い手としての地域の 成果の環元状 若手研究者・放射線技師・大学院生の人材育成には一定の貢献を 医療診断・計測は、 医工連携の中心的領域であり、 研究成果が4 現在の医療診 大学連携にも 断・治療に大きく寄与している。4大学の連携は、医療、生命分子 薬学および工学と異なる分野の専門家が集合し、英知を補完し たらす意義 あうことで、現在抱えている医療診断や治療の問題の解決、また 将来の新しいヘルスサイエンスの分野に寄与できたと考えている 研究発表 2016, 2017年に新たに発表した成果を下記に示す。 (注3) M. Muto, W. Du, M. Fukuzawa, K. Sakai, J. Tazoe, H. Ikeno, K. Yamada, Motion correction for q-space imaging by multipl e interleaved b0 images, Proc. SPIE 9784, 97843F, 2016. M. Fukuzawa, K. Takahashi, Y. Tabata, Y. Kitsunezuka, Effect of echo artifacts on characterization of pulsatile tissues in neo natal cranial ultrasonic movies, Proc. SPIE 9790, 979014 2016. R. Imamura, T. Shimanouchi, N. Murata, K. Yamashita, M. Fu kuzawa, M. Noda, Detection of Fibrillization Process of Amyloi d Beta Protein Using Arrayed Biosensor with Liposome Encaps ulating Fluorescent Molecules, Procedia Engineering vol. 168, 1 414-1417, 2016/09. M. Munekane, S. Motomura, S. Kamino, M. Ueda, H. Haba, Y

- . Yoshikawa, H.Yasui, M. Hiromura, S. Enomoto: Visualization of biodistribution of Zn complex with antidiabetic activity usin g semiconductor Compton camera GREI, Biochem. Biophys. Rep., 5, 211-215, 2016.
- 5. Koji Sakai, Kei Yamada, KentaroAkazawa, Jun Tazoe, Masashi Yasuike, Hitomi Nagano, Hiroyasu Ikeno, Toshiaki Nakagawa, Can we shorten the q-space imaging to make it clinically feas ible?, Japanese Journal of Radiology, 2017; 35: 16-24.
- 6. Hitomi Nagano, Koji Sakai, Jun Tazoe, Masashi Yasuike, Hajim e Yokota, KentaroAkazawa, Naoya Hashimoto, Kei Yamada, Ca n q-space imaging differentiate meningioma from cranial nerve schwannoma, Proceedings of the International Society for Magn etic Resonance in Medicine (ISMRM 2017), ISMRM 25th Scien tific Meeting, Hawaii, USA, 22-27 April, 2209
- 7. Y. Kawahara and A. Ishida: Surface plasmon resonance (SPR) sensing based on DNA elongation by site-selective surface plasmon (SP) field heating toward ultra-high sensitive detection of single pathogenic particles, ECS Trans. 2016, 75, 199-207.
- 8. F. Ito, T. Nishiyama, L. Shi, M. Mori, T. Hirayama, H. Nagas awa, H. Yasui, and S. Toyokuni: Contrasting intra- and extrace llular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem. Biophys. Res. Commun., 476, 600-606, 20 16.
- T. Nakamura, Minoru Takahashi, Riho Niigata, Kazuhiko Yama shita, Manabu Kume, Midori Hirai, and Hiroyuki Yasui: Chang es in blood concentrations of trace metals in cancer patients re ceiving cisplatin-based chemotherapy. Biomed. Rep., 5, 737-744, 2016.
- 10. Y. Naito, Y. Yoshikawa, M. Shintani, S. Kamoshida, N. Kajiw ara, and H. Yasui: Anti-hyperglycemic effect of long-term bis(h inokitiolato)zinc complex ([Zn(hkt)₂]) ingestion on insulin resista nce and pancreatic islet cells protection in type 2 diabetic KK-Ay mice. Biol. Pharm. Bull., 40, 318-326, 2017.
- 11. M. Munekane, M. Ueda, S. Motomura, S. Kamino, H. Haba, Y. Yoshikawa, H. Yasui, and S. Enomoto: Investigation of biodis tribution and speciation changes of orally administered dual rad iolabeled complex, bis(5-chloro-7-[¹³¹I]iodo-8-quinolinolato)[⁶⁵Zn] zinc. Biol. Pharm. Bull., 40, 510-515, 2017.
- 注1 「研究のキーワード」欄には、ホームページ閲覧者が、研究内容のイメージを つかめるように、キーワードとなる用語を3個から5個程度、記述すること。
- 注2 「研究の概要」欄には、ホームページ閲覧者の理解の助けとなるように、写真、 表、グラフ、図などを用いて、作成すること。
 - 注3 「研究発表」欄には、論文、学会発表、ニュース・リリース等について記述すること。
 - 注4 研究成果が「知的財産」の発明に該当する場合は、ホームページでの公表により、新規性の喪失となるため注意すること。
 - 注5 本書は、A4サイズ3ページ以内とすること。